
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1997
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A High Performance And Area Efficient Golomb
Coding For H.264 Entropy Encoder In FPGA

Jaikaran Singh, Khyati Borad, Mukesh Tiwari, Sanjay Rathod

Abstract- In this paper we present a new implementation method of golomb coading. Due to lower complexity this techniques is well known for
data compression . Thus it is mainly used in mobile multimedia communication . in this paper we present the golomb coding compression
algorithm in field programmable gate array (FPGA) . The proposed coding is implemented to reduce the hardware cost . The coding scheme
development utilises the VHDL . The development algorithm is simulated using the ALTERA Quartus II software

Keywords- FPGA , VHDL , ALTERA Quartus II, Exp-Golomb.

——————————  ——————————

1. INTRODUCTION
The speedy extensive rowth of digital technologies

such as internet access ,digital television, video and video
calls have increased the demand for high storage and
transmission capacity in order to fit the growing needs [1].
This has called upon for the need of effectual data
compression techniques, where the original data is
compressed into a smaller data size. This process also
reduces the transmission bandwidth needed for data
transfer. [2]. Golomb coding is the best lossless data
compression techniques for h.264 entropy encoder. It is
capable of compressing larger sized data into a smaller
sized data and also allowed the encoded data to be
reconstructed back after decompression techniques.
Moreover there is another high performance lossless
compression algorithm such as arithmetic coding [4] etc.
Though, this algorithm has higher design complexity. One
another way of compression technique is lossy
compression. In lossy data compression, the decoded data
loses some of the information, So consequence a lower
quality data. Golomb coding has been used in the latest
H.264 video standard [5] as part of its entropy coding. This
is presente the hardware implementation of H.264 video
codec baseline profile [6]. It’s contains the hardware
implementation of the Exp-Golomb coding for its entropy
coding of h.264 entropy encoder. Another Golomb coding
applications are the use in system-on-chip (SoC) test-data
compression system as presented in [7]. In [8] Jung and
Chong also use Golomb coding for SoC test data
compression, where the new algorithm developed can
reduce the scan-in power and test data volume. In this
paper, the development of Golomb coding algorithms for
data compression and their implementation in Field
Programmable Gate Array (FPGA) is presented. The
algorithm is developed using the ALTERA Quartus II
software [9]. The remainder of the paper is organised as
follows[10]. Section II presents the details of Golomb
Coding and the basic compression method. Section III

presents the modified version of the Golomb coding
compression methods in practical FPGA implementation.
Section iv represents the simulation results of the golomb
algorithms generated in order to prove their validity.
Lastly, Section v concludes the paper.

2. BACKGROUND

This section covers the details background information

regarding Golomb Coding.In entropy coading of H.264 the
data are coading using either context-adaptive variable
length coding (CAVLC) or using Exp-Golomb codes
depending on the entropy encoding mode.

When entropy coding mode is set to 0 then residual block
data is coded by a context-adaptive variable length coding
(CAVLC) scheme and When entropy coding mode is set to
1 then variable-length coded units are coded by Exp-
Golomb codes.

TABLE:1 Exp-Golomb codewords
================================
Code_ num Codeword

 0 1
 1 010
 2 011
 3 00100
 4 00101
 5 00110
 6 00111
 7 0001000
 8 0001001
 … …

=================================

IJSER

http://www.ijser.org/
http://www.wordhippo.com/what-is/another-word-for/effectual.html

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1998
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Exp-Golomb codes (Exponential Golomb codes) are
variable length codes with a regular construction. Table 1
lists the first 9 codewords .It is clear from examining the
first few codewords from Table-1 that they are
constructed in a logical way as follows :

[M zeros][1][INFO]

Where the INFO is an M-bit field carrying

information.As shown in table-1, the first codeword has
no leading zero or trailing INFO and Codewords 1 and 2
have a single-bit INFO field and codewords 3–6 have a
two-bit INFO field and so on. The length of each Exp-
Golomb codeword is (2M + 1) bits.

Each codeword can be constructed by the encoder
based on its index code_num:

M = floor(log2[code_num + 1])
INFO = code num + 1 – 2M

A Decoder can be decode codeword as follows:
i. Read in M leading zeros followed by 1.
ii. Read M-bit INFO field.
iii. code_num = 2M + INFO – 1

[For codeword 0: INFO and M are zero.]

A parameter h to be encoded is mapped to code_num

in one of the following ways:
ue(h) : Unsigned direct mapping, code_num = h.

Used for reference frame index , macroblock type and
others.

se(h) : Signed mapping, used for motion vector

difference, delta QP and others. h is mapped to
code_num as follows (Table-2).

code num = 2|h| (h ≤ 0)
code num = 2|h|−1 (h> 0)

TABLE-2 Signed mapping se(h)
============================
h code_num

0 0
1 1
−1 2
2 3
−2 4
3 5
.
============================

 me(h) : Mapped symbols; parameter h is mapped to
code_num according to a table specified in the standard
parameter. This mapping is used for the
coded_block_pattern parameter as shown in Table 3.As
Table 3 lists a small part of the table for Inter predicted
macroblocks , coded_block_pattern indicates which 8x8
blocks in a macroblock have non-zero coefficients. Each of
these mappings (ue(h), se(h) and me(h)) are designed to
produce short codewords for repeated values and longer
codewords for less common parameter values.

For example, inter macroblock type P_L0_16 × 16
(prediction of 16 × 16 luma partition from a previous
picture) is assigned code num 0 because it occurs
frequently; macroblock type P_8× 8 (prediction of 8 × 8
luma partition from a previous picture) is assigned
code_num 3 because it occurs less frequently; the
commonly-occurring motion vector difference (MVD) value
of 0 maps to code_num 0 whereas the less-common MVD=
−3 maps to code_num 6.

TABLE 3 Part of coded block pattern table
==
coded block pattern (Inter prediction) code_num

0 (no non-zero blocks) 0
16 (chroma DC block non-zero) 1
1 (top-left 8 × 8 luma block non-zero) 2
2 (top-right 8 × 8 luma block non-zero) 3
4 (lower-left 8 × 8 luma block non-zero) 4
8 (lower-right 8 × 8 luma block non-zero) 5
32 (chroma DC and AC blocks non-zero) 6
3 (top-left and top-right 8 × 8 luma blocks non-zero) 7
.

==
So using this four mapping we can calculate the value of
code_num. And using the value of code_num we can find
the value of M and then using the value of code_num and
M we can calculate the value of INFO.

3. FPGA IMPLEMENTATION
The Golomb encoder algorithm shown in Figure 1 is a

complete design for hardware implementation. After the
system has been reset , the system will move into state 1 ,
which is remains ideal if enable signal is zero and goes to
state 2 if enable signal is one. In state 2 the system is latch
the value of code_num and calculate M=
(log2[code_num+1]).Value of code_num is decided from
the mapping of ue(h) , se(h) and And this value is decided
using Table-1, Table-2 and Table-3. If calculation is
completed the system is goes in to the state 3 and if the
value of code_num is zero then the system goes direct to
state 6. After calculating the value of M In state 3 the
system is calculate 2M for calculating the value of INFO in
next state. In state 4 the system calculate the value of INFO

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1999
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

using the value of code_num and 2M . After calculating the
value of INFO and M the system goes to the state 5 where it
concatenate M,1 and INFO and generate the encoded byte
of code_num. After concatenate of M ,1 and INFO the
system goes into the state 6 to cheak if total encode byte is
reach or not. If total encode byte is reach then system
generate the output and if total encoded byte does not
reached the system further goes to state 2 to latch the
code_num and then the system will then stop handling any
process until a reset signal is given.

 Enable = 0

 Enable = 1

 If code_num= 0

Total encoded
 Bytes not reach

 If code_num=0

Total encode bytes reached

Figure 1 Golomb encoder algorithm on FPGA

4. RESULTS
The results for exponential Golomb encoder algorithm

implementation on FPGA are simulated and verified for
their validity. Firstly, the implementation of Golomb
encoder shown in Figure 1 was simulated using ALTERA
Quartus II software with 10 bytes sample data, 0x00, 0x01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 and 0x09. The
simulated result is shown in Figure 2 From the observation
of the simulation diagram of Figure 2, input data signal of
code_num will only be accepted by the system if
en_codenum signal is asserted HIGH. Data will only be
accepted when the system is not busy, in other words, the
signal reset is asserted HIGH. This is to avoid the system
from being flooded with data when the system is not ready
for the next data. Output data signal of codew(data out) is
only valid when the valid signal is asserted as HIGH. The
expected output is shown in Figure 3 and the expected
output is compared with the simulated output. It is shown
that the simulated conforms to expected output, thus
showing the design is valid

5. CONCLUSION
Through simulation of the Golomb Coding, it can be

concluded that the algorithm of Golomb Coding on FPGA
had been successfully developed. This had been proven by
comparing the results generated using simulation of the
Golomb Encoder with the expected results which showed
result was identical.

The use of encoded data as the input data for Golomb
Decoder managed to generate back the original data
proved that the Golomb Decoder System may also
successfully developed. Hence, the whole system of
Golomb Coding was completed.

ACKNOWLEDGMENT

The authors are grateful to the RGPV for funding this
work as a part of M.Tech thesis.

REFERENCES

[1] M. Ghanbari, Video Coding an Introduction to Standard Codecs.
London: The Institution of Electrical Engineering, UK, 2003.
[2] T. Sikora, “Trends and perspectives in image and video coding,”
Proceedings of IEEE, vol. 93, no. 1, pp. 6-17, Jan 2005.
[3] S. W. Golomb, “Run Length Encodings,” IEEE Transactions on
Information Theory, vol. 12, pp. 399-401, 1966.
[4] I. H. Witten, R. M. Neal, and J. G. Cleary, "Arithmetic Coding for
Data Compression" CACM Journal, vol. 30, no. 6, pp.520–540, June
1987.
[5] J. Ostermann, J. Bormans, et al, “Video coding with H.264/AVC:
Tools, Performance, and Complexity,” IEEE Circuits and System
Magazine, Vol. 4, No. 1, pp. 7-28, First Quarter 2004.
[6] T. Silva, et. al., FPGA based design of CAVLC and Exp-Golomb
coders for H.264/AVC baseline entropy coding,” Proc 3rd IEEE
Southern Conference on Programmable Logic, pp. 161-166, Feb 2007.
[7] A. Chandra and K. Chakrabarty, “System on-a-chip test data
compression and decompression architectures based on Golomb
codes,” IEEE Trans. Computer-Aided Design, vol. 20, pp.355-368, Mar.

State 5
Concatenate

[m][1][INFO]

State 6
Total encoded bytes

End

State 3
Calculate 2^M

State 4
Calculate INFO =

code_num+1-2^M

Reset

State1
Idle

State 2
Latch code_num and calculate

 M = floor(log2[code_num + 1])
 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2000
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2001.
[8] J. M. Jung, and J. W. Chong, “Efficient test data compression and
low power scan testing in SoCs,” ETRI Journal, vol. 25, no. 5, pp.
321- 327, Oct 2003.
[9] Quartus II development software literature, availableAt

http://www.altera.com/literature/lit-qts.jsp.

[10] G. H. H’ng, M. F. M. Salleh and Z. A. Halim” Golomb Coding
Implementation in FPGA” Faculty of Electrical Engineering
Universiti Teknologi Malaysia , VOL. 10, NO. 2, 36-40, 2008 .
[11] White Paper: H.264 / AVC Context Adaptive Variable
Length Coding Iain Richardson
[12] Iain E.G. Richardson , “H.264 and MPEG-4 Video
Compression” John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, England.

Figure 2 Simulation Result Of Exp-Golomb Encoder. IJSER

http://www.ijser.org/
http://www.altera.com/literature/lit-qts.jsp

	1. INTRODUCTION
	2. BACKGROUND
	3. FPGA IMPLEMENTATION
	4. RESULTS
	5. CONCLUSION

